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Magnetic Griineisen parameters in chromium 

Eric Fawcett 
Physics Department and Scarborough College, University of Toronto, Toronto M5S 1A7, 
Canada 

Received 6 June 1988 

Abstract. Griineisen parameters are defined and determined for Cr in the paramagnetic 
phase, at and below the NCel temperature, at low temperatures and at zero temperature, by 
comparing the temperature dependence of the thermophysical properties, as well as from 
direct pressure measurements (the latter also for dilute antiferromagnetic alloys of Cr with 
V or MO). The values are all large and negative, and in particular in the paramagnetic phase 
the logarithmicvolume dependence of the characteristic spin fluctuation temperature is 155. 

1. Introduction 

The Gruneisen parameters of a magnetic system may be defined as the negative of the 
logarithmic derivatives with respect to strain of the characteristic energies of the system. 
For example, for an antiferromagnet, the Griineisen parameters may be defined for the 
NCel temperature T,, and for the square of the sublattice magnetisation M O  at zero 
temperature (or equivalently where MO is the amplitude of a spin-density wave). 

Other Griineisen parameters may be defined in different temperature regions by 
comparing the magnetic contributions to various thermophysical properties, namely the 
specific heat, the thermal expansivity and the elastic moduli. For example, for an 
antiferromagnet, the Griineisen parameters may be defined below T,: where the mag- 
neticcontributions are associatedwith the growthof the order parameterwith decreasing 
temperature, and above T, where the magnetic contributions due to spin fluctuations 
in the paramagnetic state normally decrease with increasing temperature. 

These latter Gruneisen parameters may also be expressed in terms of the temperature 
dependence of a characteristic energy, if they are analysed in terms of an appropriate 
model Thus the temperature may be referred to a strain-dependent parameter TN, or 
the field energy may be referred to a strain-dependent parameter M i .  The analysis 
normally assumes linearity in the strain dependence. If the system exhibits little 
anisotropy, it is sufficient to define the Griineisen parameters in terms of volume strain, 
with considerable simplification of the formalism. 

For the following reasons, Cr and its dilute antiferromagnetic alloys constitute an 
ideal system to illustrate how in practice these various Griineisen parameters may be 
determined. 

(i) The Griineisen parameters are large-the magnetic properties of Cr are very 
strain dependent. 
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(ii) The strain dependence is largely a volume dependence-the magnetoelastic 
tensor of Cr is almost isotropic and the off-diagonal shear components are small. 

(iii) A dilute alloy Cr,,Vj is available, which does not order magnetically, but which 
otherwise might be expected to be close to Cr-thus, Cr,,Vj may be regarded as 
'paramagnetic Cr', to which antiferromagnetic Cr may be referred in order to obtain by 
subtraction the magnetic contributions to the thermophysical properties. 

2. Theory 

We shall consider three temperature regions. The first, T/TN i 1, was analysed by Muir 
er a1 (1987a)f for the general case, in which the NCel temperature T,(EJ is linearly 
dependent on the strain tensor E ~ .  Their measurements (Muir er a1 1987b) of the iem- 
perature dependence of the elastic constants of singles single-Q Cr show that the 
magnetic contribution corresponds, to a good approximation, to a dependence on 
volume strain W .  In this approximation, the magnetic free energy in the ordered state 
close to the NCel temperature may be written 

AF(r) = f[r(w>l r(w) = T/T, ( U )  s 1. (1) 
This gives for the ratios of the magnetic contributions to the specific heat C, the thermal 
expansivity /3 and the bulk modulus B ,  the expressions 

The function f(r) might be expected to resemble the order parameter, which is a 
rapid function o f t  close to T, (see figure 4(a) in the paper by Fawcett (1988)), so that 
f'(r) may be neglected relative tofl(t). In this approximation, we obtain the Griineisen 
parameters 

r!- = B ,  lim[AP(r)/AC(t)] (4) 

r!! = -(l /TNBN) lim[AB(t)/A/3(t)] ( 5 )  

f--t 1 

I- 1 

where By is the bulk modulus at T,. For this model, the two Gruneisen parameters have 
the same value 

= r!! = -d{ln[T,(w)]}/do. ( 6 )  
We consider next the temperature region close to, but above, the NCel temperature: 

r = T/TN b 1. Here spin fluctuations are assumed to make a contribution to the magnetic 
free energy similar in form to equation (1): 

AF(r) = d t ( w > l  f(w) = T/T,F(o) b 1. (7)  
The temperature here is referred to a spin-fluctuation temperature TsF( U ) ,  whose strain 
dependence may be quite different from that of TN(w). The function g(t) might be 
t Note that in the present paper a different notation is used for the Gruneisen parameters, since in Fawcett 
er a1 (1986a) and in this reference the distinction between the first and second kind. r' and rr', respectively, is 
obscure; thus yh- = rL, y n .  = r'f , ym- = r;, y;u = r! and yn = rh. 
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expected to resemble the temperature dependence of the mean square magneticmoment 
ofthespinfluctuations, varyingrapidlyclose to TN, so thatg'(t)maybe neglectedrelative 
to g"(t), like the approximation for f(t)  when t d 1. Thus the resultant expressions, 
analogous to equations (2) and (3), yield Gruneisen parameters r: and r? defined by 
equations such as (4) and ( 5 ) ,  but with t approaching the limit 1 from above, i.e. t b 1. 
For this model, one obtains 

r: = r': = -d{ln[T,,(w)]}/do. (8) 
We consider finally the low-temperature region, where two strain-dependent par- 

ameters are needed to describe the magnetic free energy. We shall see in $ 3  that three 
parameters can be determined from the available experimental data for Cr. 
are defined by equations like the Gruneisen parameters defined close to TN by equations 
(4) and ( 5 ) ,  which are the temperature-dependent contributions to the thermo-physical 
properties in the limit as temperature tends to zero. r$ is defined, on the other hand, 
at zero temperature, by the ratio of the fractional change in the bulk modulus to the 
magnetovolume: 

and 

r blI = ( 1 / B ~  )(AB /A 0 o). (9) 
The magnetic contributions to the bulk modulus and the magnetovolume at zero 

temperature may be included in the formalism by introducing a volume-dependent 
pre-factor q ( w )  into the magnetic contribution to the free energy. The temperature 
dependence at low temperatures is described by defining the reduced temperature in 
terms of a volume-dependent temperature parameter To( w )  characteristic of the low- 
temperature region. Thus, we write 

W T ,  = (P(w>f[ t (o>l  t(o) = T/To ( U )  b 0 (10) 

AC= -T[a2(AF)/aT2] = - ( ~ f " / T o  (11) 
A w  = - ~ ~ / B ) [ a ( A F ) / a ~ l  = (1/Bo>{dd(ln To)/dwItf' - q ' f }  (12) 

Afi = a(Aeo)/aT= (l/BoTo){q[d(ln To)/dw](f' + f " )  - q' f ' }  (13) 

(14) 

and obtain the following expressions for the thermophysical properties: 

AB = d2(AF) /dw2  = q , " f  

- 2p'[d(ln To)/dw]tf' + q[d(ln TO)/dwl2(2tf' + t2fn). 

Inequations (12) and (13), we takeB to be constant and equal to thezero-temperature 
value Bo, since the temperature dependence of the bulk modulus can be shown to make 
a negligible contribution to Afi in Cr, because of the small value of the zero-temperature 
magnetovolume Amo. In equation (14), we have assumed To(w)  to be a linear function 
of w ,  so that its second derivative is negligible, in contrast with q ( w ) ,  whose second 
derivative is entirely responsible for the magnetic contribution to the zero-temperature 
bulk modulus. 

The analysis is able to proceed only by use of a reasonable, but rather crude, 
approximation for the functionf(t) in the low-temperature limit, namely 

f(t> = 1 f"(t)  = f ' ( t )  = t. 
These approximations are true in the low-temperature limit of, for example, the function 
f ( t )  = (1 - t2)2 used by Testardi (1975) to illustrate his thermodynamic analysis for a 
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general ordering transition, and by Steinemann (1978) for the free energy of a weak 
itinerant antiferromagnet. 

We then obtain, writing 

x = -d(ln To)/do y = -d(ln q ) / d o  (16) 
expressions for the three low-temperature parameters: 

rb = Bo lim[Ap(r)/AC(t)] = 2x - y 
r+ 0 

(18) 

(19) 

yII - - - ( l / B o T o )  lim[AB(t)/tAp(t)] = (3x2 - 2y)/(2x - y )  
r+ 0 

r;" = (l/Bo)(ABo/Aoo) = - d ( h  q ' ) / d o  = -q" /q ' .  

Only r;'' is a Griineisen parameter in the sense that we are using the term, namely 
the negative of the logarithmic derivative with respect to volume strain of a characteristic 
energy of the system (or more precisely, in this case, the volume strain derivative of such 
an energy). x and y ,  as defined in equation (16), are also low-temperature Gruneisen 
parameters, which are obtained by solving equations (17) and (18) with the measured 
values of the pseudo-Gruneisen parameters rk and r!. 

3. Experiment 

The volume thermal expansivity and the bulk modulus B of Cr, when compared with 
those of Cr,,Vj, as illustrated in figures 1 and 2, respectively, show strong magnetic 
contributions. In each case, the magnetic contribution in the paramagnetic phase above 
the NCel temperature Ty is comparable in magnitude with that seen below T, and persists 
up  to about 600 K for f l  and up to somewhat higher temperatures for B .  

1 1 I I I I I 
200 LOO 600 

T I K i  

Figure 1. Temperature dependence of the vo!ume thermal expansivity of Cr (-) and 
CrgjV, (---). The negative thermal expansivity due to the first-order NCei transition in Cr 
is shown by an arrow at the NCel temperature T, = 311 K (after Roberts et a1 (1983) and 
White er ai (1986)). 
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Figure 2. Temperature dependence of the bulk modulus of Cr (-) and Cr,,V, (---) in 
the temperature range T = C-700 K. The curve for Cr below the NCel temperature T, = 
311 K is obtained from the data of Muir et a/ (1987b) and above Th from Lahteenkorva and 
Lenkkeri (1981). The curve for CrgjVj is obtained from the data of Alberts and Lourens 
(1985) and Alberts (1987) and is adjusted by shiftiq in the direction of the ordinate axis so 
as to intersect the curve for Cr at the temperature T = 700 K,  the highest measured. 

When we plot the magnetic contribution to the bulk modulus 

AB = B(Cr) - B(Cr,,V,) 

AB = /3(Cr) - B(Cr9j vj) 

(20) 

(21) 

against the magnetic contribution to  the thermal expansivity 

we expect from equation (3) to find that, as the temperature approaches the Nee! 
transition from beiow, making f ’ ( r )  f ” ( t ) ,  linearity between A/3 and AB will be 
observed. In fact, the linearity is found to extend over a very wide temperature range, 
from a temperature T a little below TN = 311 K? at least down to T = 130 K (see figure 
2 in Muir et al (1987a)). Over this range, the bulk modulus of CryjVj varies by !ess 
than 1% (Alberts and Lourens 1985, Alberts 1987) and, using its value at the NCel 
temperature, Bx = 207 GPa, in equation ( 5 ) ,  we obtain from the proportionality factor 
between AB and AB a r!1 value of -37 for the Gruneisen parameter. A better r! value 
of -40 is obtained by using By = 190 GPa, the rough average of BN for CrgjVj and Cr 
near T, = 311 K (see figure 2). 

Note that AB and AB, as defined in equations (20) and (21), are both negative and 
opposite in sign to the corresponding quantities obtained by Muir et a1 (1987a). It was 
convenient in this earlier paper to follow Testardi (1975) and to define -A\F(t) as the 
ma.gnetic contribution to the free energy. This makes no difference to the signs of the 
Griineisen parameters, since each is defined in equations (4), (5) and (9) as the ratio of 
the magnetic contributions to two thermophysical properties. 

We find furthermore that AB and 4/3 are linearly related above the Nee1 transition, 
from a temperature a little above TN, up to at least T = 500 K (see figure 2 in Muir er a1 
(1987a)). The rate of change in AB with temperature relative to that of A/3 in the 
paramagnetic phase is considerably greater, however, than in the ordered phase, and 
the analogue of equation (5) for t > 1 gives a r? value of -155 for the Gruneisen 
parameter, with BK = 190 GPa. 

Because of these large values of the Griineisen parameters, it is difficult to obtain 
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meaningful values for I" and l?+ by the use of equation (4) and its analogue for t b 1. 
Thus, even with very careful absolute calorimetry, the magnetic contribution AC to the 
specific heat can be determined with only poor accuracy. Below the NCel transition, in 
the data of Williams et a1 (1979) for Cr and for Cr99.jVo.j (whose Nee1 temperature is 
about 50 K below that of Cr, so that it constitutes a satisfactory reference material), we 
obtain, at T = 300 K, amagnetic contribution to the specific heat AC of about 23 kJ m-j 
(see figure 2 of Fawcett et a1 (1986a)). The corresponding magnetic contribution AP to 
the thermal expansivity of about 10 X K-' gives, with BN = 190 GPa in equation 
(4), a rL vaiue of -65 for the Griineisen parameter. 

In the paramagnetic phase, the magnetic contribution to the thermal expansivity, as 
seen in figure 1, is somewhat smaller than in the ordered phase, and the Griineisen 
parameter is so large that the specific heat of Cr coincides, within the experimental 
accuracy of 0.2%, with that of Cr99,jVo.5 (see figure 2 of Fawcett etal (1986a)). Thus only 
a lower limit is available for its magnitude: Ir: I 3 100. 

In the low-temperature region, we shall consider the behaviour of Cr,oo-xVx alloys, 
as well as that of Cr. The coefficient of the linear term in the temperature dependence 
of the thermal expansivity and the specific heat of Cr, given in table 1, were used by 
Kaiser etal (1985) to determine an 'electronic' Griineisen parameter defined by analogy 
with equation (2): 

r e  = B o ( P ( t ) / W )  (22) 

which has essentially the same value, re = -12 k 1, for the antiferromagnetic alloys as 
for Cr. If, however, in the spirit of equation (l), we define magnetic contributions to /3 
and C by writing 

AP = P(A) - P(Cr9jVj 1 
AC = C(A) - C(Cr95Vj) 

(23) 

(24) 

where P(A) and C(A) correspond to the antiferromagnetic alloy A, containing 
x < 5 at.% V ( x  = 0 for Cr), we obtain the low-temperature Griineisen parameter rk 
defined in equation (17). The values of r: in table 1 are all positive and range from 23 
for Cr to 142 for Cr-3.4 at.% V. 

We now consider S i  for Cr, as defined in equation (18). This can be obtained from 
the temperature dependence of the magnetic contributions to the thermal expansivity, 

Table 1. Low-temperature Griineisen parameters re ('electronic' defined in equation (22)); 
and ri (defined in equation (17)) of Cr and dilute Cr,w-,V, alloys. Data are taken from 
table 1 of Kaiser er a1 (1985), and the Griineisen parameters were calculated by use of the 
average value Bo = 200 GPa for the bulk modulus (see figure 2). 

0 311 -10.8 -14.1 200 - 120 -11 23 
0.5 263 -11.4 -14.7 210 -110 -11 27 
1.5 150 -15.0 -18.3 220 - 100 -13 37 
2.5 105 -15.6 -18.9 250 -70 -12 54 
3.4 28 -18.0 -21.3 290 - 30 -12 142 
5 0 3.3 320 2.0 
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Figure 3. Temperature dependence of the bulk modulus of Cr (e) and Cr,,V, (0) in the 
temperature range T = C-180 K in which the Cr values are calculated from the data of 
Palmer and Lee (1971) for a Cr single crystal, and the Cr,,V, values were measured on a 
polycrystalline sample by Alberts (1987): -, quadratic least-squares fit over the tem- 
perature range T = 5-120 K; ---, fit over the range T = 5-40 K. 

h/3( T ) / T ,  given in the first column of table 1, and to the bulk modulus AB( T ) .  Evaluation 
of AB(T)  from the available low-temperature data, shown in figure 3, is difficult. The 
bulk modulus of Crg5V5 appears to be constant below about 130K. Although the 
measurements terminate at 80 K, it seems unlikely that there will be any further variation 
at lower temperatures. For Cr, however, while the quadratic fit 

B ( T )  = Bo + B2T2  Bo = 190.4 GPa B 2  = -207 kPa K-2 (25) 
to the temperature dependence of B( T )  is quite good over the whole temperature range 
below the spin-flip temperature TsF -- 123 K, the coefficient B2 = -116 kPa K-2 is 
significantly smaller for a fit over the temperature range T = 5-40 K. One cannot rule 
out indeed the possibility that, below T = 20 K, B2 is zero within the experimental 
accuracy. Thus, we obtain two values: ril = -73(T G 120 K) or r! = -41 ( T G  40 K). 

Equations (17) and (18) yield a quadratic equation forx (or y ) ,  as defined in equation 
(16), which has two solutions for each value of B2 and ril, as given in table 2. Since the 
volume derivatives of TSF(w) and TN(w) in table 4 (see later) are both positive, it seems 
unlikely that the solution of the quadratic equation corresponding to the negative values 
for d(ln To)/d w and d(ln q)/d w in table 2, labelled ( a )  and (c), are relevant to Cr. We 
adopt the values labelled (b ) ,  but we must keep in mind the possibility that a fit to B( T )  

Table 2. Low-temperature Griineisen parameters in Cr, rounded off to the nearest multiple 
O f  5.  

B 2  (kPa K-2) x = -d(!n T,)/dw y = -d(ln y) /dw rtl 

-207 ( T S  120K) ( U )  70 120 -70 
(b )  -25 -70 

-116(T<40K) (c) 60 100 
(d) -15 -55 
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at lower temperatures might give the solutions labelled (d )  in table 2, or even smaller 
values d(ln To)/dw 6 15 and d(ln 9 ) / d o  5 55. 

The r$ value of -70, is obtained from the values ABo = -20 GPa and Bo = 
200 GPa, the latter being the average value for the bulk modulus at zero temperatures 
for Cr and CrgjVj, as seen in figure 3, with the magnetovolume Amo = 1.43 x 10-3 
(Kaiser et a1 1985) substituted in equation (9). 

The commonest Gruneisen parameter in a magnetic system is derived from direct 
measurement of the pressure dependence of the ordering temperature TN, with 

r N  = -d(ln T,)/du = BK[d(ln T ~ ) / d p ] .  (26)  
The negative sign in equation (26) ensures consistency, according to equation (6), with 
the Griineisen parameters I?!. and I?!! defined in equations (4) and ( 5 ) .  In table 3: the 
magnitude of for dilute alloys of Cr having TN 2 200 K is roughly constant. It increases 
rapidly, however, for lower values of T,, e.g. ri in table 1. rb is positive however, and 
it would be necessary for each alloy to combine the value of rb with the corresponding 
value of rbl to obtain d(ln To)/d o, as shown for Cr in table 2, before a comparison could 
be made with d(ln T,)/dw. 

Finally, we can define another Gruneisen parameter based on direct pressure 
measurements on Cr. The magnitude of the wave-vector Q of the spin-density wave 
decreases under pressure. The pressure dependence can be measured accurately by a 
de Haas-van Alphen technique (Venema et a1 1980), and Ruesink and Templeton (1984) 
have studied the remarkable hysteretic effects which are thought to be due to pinning of 
the spin-density wave by impurities (Fawcett 1988). The ‘soft mode’, which is observed 
when pressure is applied after first cooling, is believed to be the intrinsic behaviour and 
Ruesink and Templeton (1984) determined a value for the pressure dependence under 
theseconditions: d(ln Q’)/dp = -5.5 ? 0.3 TPa-’,where Q’ = Qa/2nisthemagnitude 
of Q measured in units of the reciprocal lattice vector. 

The appropriate quantity for determining the Griineisen parameter Tp, however, is 
6‘ = 1 - Q’,  the incommensurability parameter. The relation (Venema et a1 1980) 

d(1n 6’ ) /do  = Bo[d(ln Q’)/dp][(l - 4 /61  - f 

gives the value 

rQ = d{ln[(8‘)2]}/dw = -42 5 2 (28) 

Table 3. Gruneisen parameters r, for Cr and its dilute antiferromagnetic alloys, obtained 
from the pressure dependence of the NCel temperature T,. An average value for the bulk 
modulus B,  = 180 GPa is assumed for use in equation (26). Note that the sign of d(ln Th)/  
dp was wrong throughout in the original version of this table (Fawcett er a1 1986b). 

Reference 

McWhan and Rice (1967) 0 311 -1.65 -29 
Furuya et a/ (1970) 1.18Mn + 0.59V 433 -1.5 - 26 
Furuya er a/ (1970) 0.45V -1.6 - 28 
Rice er a1 (1969) 8.6Mo 208 -1.45 - 26 
Rice et a1 (1969) 1 .2v 200 -1.25 - 23 
Rice et a/ (1969) 12Mo 114 -2.2 -40 
Rice et a/ (1969) 2.8V 92 -3.15 -57 
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when we substitute the low-temperature values 6 = 0.0486 and Bo = 190 GPa. Equation 
(28) follows from Walker’s (1980) phenomenological Landau-type theory of the spin- 
density wave state of Cr. He shows that the Gibbs free energy is quadratic in 6’, with a 
negative sign corresponding to the requirement that the minimisation of this term with 
respect to 6‘ should give a non-zero value of a‘, i.e. an incommensurate spin-density 
wave. 

4. Discussion 

We assemble in table 4 the values of the Gruneisen parameters for Cr for the different 
temperature regions, obtained by the various experimental procedures. All the values 
of the corresponding logarithmic derivatives of the characteristic energies are positive. 
except d{ln[(6’)2]}/dw. We have bracketed the values of r: and rb, since they are 
pseudo-Gruneisen parameters, and algebraic analysis is required to obtain from them 
the Gruneisen parameters -d(ln To)/dw and -d(ln cp)/dto given in the last column of 
table 4. The alternative choice of the root of the quadratic equation. however, would 
yield positive values for these Gruneisen parameters, as seen from line (a)  of table 2. 
Also a fit to the low-temperature data (7-S 40 K) in figure 3 yields values of these 
Gruneisen parameters somewhat smaller in magnitude, as in line (d )  of table 2. 

The magnitude of the Gruneisen parameter ry = -155 in the paramagnetic phase 
is at least a factor of 2 greater than that of any other Gruneisen parameter in the ordered 
phase. The significance of this giant Gruneisen parameter in paramagnetic Cr is discussed 
elsewhere (Fawcett 1988b). It may be characteristic of the spin fluctuations responsible 
for the commensurate diffuse (CD) inelastic neutron scattering seen by Grier et aZ(1985) 
in Cr. The r!! value of -55 in the dilute alloy Cr-(O.5-0.67) at.% V is considerably 
smaller (Fawcett 1989), and the CD scattering is suppressed in these Crloo-xVx alloys 
(Fawcett erall988, 1989). 

There have been several ca!culations of the magneto-elastic coupling constant C in 
Cr, which relates the magnetovolume strain LO to the mean square moment (M’( T ) )  
through the equation 

w = (C/B)(M’).  (29) 
At zero temperature, the ground-state magnetovolume strain oo for a spin-density wave 
of amplitude M O  is 

L O O  = 4(C/B0)Mi .  (30) 
Kaiser and Haynes (1985) quote several theoretical estimates which use either calculated 
or experimental values of M O  to yield values over the wide range C/Bo  = 0.8 to 

Table 4. Values of the Griineisen parameters. and best values for the logarithmic derivatives 
of the characteristic energies for Cr. rounded off to the nearest multiple of 5. 

Paramagnetic phase r’: = -155. r!. < -100 d(ln TsF)/do = 140 
NCel temperature T,  I-, = -30 d(ln T,) /dw = 30 
Below T, rii = -40. rL = -65 d{ln[ T,(o)]}/d o = 40 
Low temperatures (r;] = -73. r; = 23) d(ln T,)/dw = 25 

d(ln q ) / d  w = 70 
ra = -40 d{ln[(6‘)2]}/do = -40 

Zero temperature r;[* = -70 d(ln q’)/dw = 70 
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6.6%pi2.  Fawcett et al(1986a) estimate a C/B,  value of 0.9%pi2 from their thermal 
expansion data combined with the measured value of M O .  They suggest that this dis- 
crepancy between large theoretical estimates and their relatively low experimental value 
of C/Bo are due to the volume dependence of the exchange interaction parameter in Cr. 

It is not clear how to relate the theoretical estimates of the magneto-elastic coupling 
constant to the experimental Griineisen parameters, however. I recommend to the 
attention of theorists this problem as well as the problem of explaining, perhaps by use 
of a phenomenological model, the giant Griineisen parameter in the paramagnetic phase 
of Cr. 
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